Search results for " Kadomtsev-Petviashvili equation"

showing 2 items of 2 documents

On critical behaviour in generalized Kadomtsev-Petviashvili equations

2016

International audience; An asymptotic description of the formation of dispersive shock waves in solutions to the generalized Kadomtsev–Petviashvili (KP) equation is conjectured. The asymptotic description based on a multiscales expansion is given in terms of a special solution to an ordinary differential equation of the Painlevé I hierarchy. Several examples are discussed numerically to provide strong evidence for the validity of the conjecture. The numerical study of the long time behaviour of these examples indicates persistence of dispersive shock waves in solutions to the (subcritical) KP equations, while in the supercritical KP equations a blow-up occurs after the formation of the disp…

Differential equationsShock waveSpecial solutionBlow-upKadomtsev–Petviashvili equations[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]Mathematics::Analysis of PDEsFOS: Physical sciencesPainlevé equationsKadomtsev-Petviashvili equationsKadomtsev–Petviashvili equation01 natural sciences010305 fluids & plasmasShock wavesDispersive partial differential equationMathematics - Analysis of PDEs0103 physical sciencesFOS: MathematicsCritical behaviourLong-time behaviourSupercriticalDispersion (waves)0101 mathematicsKP equationSettore MAT/07 - Fisica MatematicaMathematical PhysicsMathematicsMathematical physicsKadomtsev-Petviashvili equationPainleve equationsConjectureNonlinear Sciences - Exactly Solvable and Integrable Systems010102 general mathematicsMathematical analysisDispersive shocks Kadomtsev–Petviashvili equations Painlevé equations Differential equations Dispersion (waves) Ordinary differential equations Shock waves Blow-up Critical behaviour Dispersive shocks Kadomtsev-Petviashvili equation KP equation Long-time behaviour Special solutions Supercritical Partial differential equationsStatistical and Nonlinear PhysicsMathematical Physics (math-ph)Condensed Matter PhysicsDispersive shocksPartial differential equationsNonlinear Sciences::Exactly Solvable and Integrable SystemsOrdinary differential equationSpecial solutions[ PHYS.MPHY ] Physics [physics]/Mathematical Physics [math-ph]Exactly Solvable and Integrable Systems (nlin.SI)Ordinary differential equationsAnalysis of PDEs (math.AP)
researchProduct

Shock formation in the dispersionless Kadomtsev-Petviashvili equation

2016

The dispersionless Kadomtsev-Petviashvili (dKP) equation $(u_t+uu_x)_x=u_{yy}$ is one of the simplest nonlinear wave equations describing two-dimensional shocks. To solve the dKP equation we use a coordinate transformation inspired by the method of characteristics for the one-dimensional Hopf equation $u_t+uu_x=0$. We show numerically that the solutions to the transformed equation do not develop shocks. This permits us to extend the dKP solution as the graph of a multivalued function beyond the critical time when the gradients blow up. This overturned solution is multivalued in a lip shape region in the $(x,y)$ plane, where the solution of the dKP equation exists in a weak sense only, and a…

Shock formationFOS: Physical sciencesGeneral Physics and AstronomyKadomtsev–Petviashvili equation01 natural sciencesCritical point (mathematics)010305 fluids & plasmasDissipative dKP equation[ MATH.MATH-AP ] Mathematics [math]/Analysis of PDEs [math.AP]Mathematics - Analysis of PDEsMethod of characteristicsPosition (vector)[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]0103 physical sciencesFOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]0101 mathematicsSettore MAT/07 - Fisica MatematicaMathematical PhysicsMathematical physicsMathematicsCusp (singularity)Multiscales analysisdispersionless Kadomtsev-Petviashvili equation; dissipative dKP equation; multiscales analysis; shock formationPlane (geometry)Multivalued functionApplied Mathematics010102 general mathematics[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]Statistical and Nonlinear PhysicsMathematical Physics (math-ph)Nonlinear Sciences::Exactly Solvable and Integrable SystemsDispersionless Kadomtsev-Petviashvili equationDissipative systemAnalysis of PDEs (math.AP)
researchProduct